
A SPHERICAL RADIOMETER 

D. M. Shcherbina UDC 535.214.4 

A theoretical analysis is performed of a radiation detector constructed in the 
form of a spherical cavity within which a filament heater is located, with an 
externally mounted thermopile. 

Radiant flux measurements may employ either receivers or radiators with known character- 
istics. At the present time, however, it is felt that radiators cannot perform measurements 
with uncertainties of less than 1% [i, 2]. 

Metrological studies employ receivers in the form of various-shaped cavities with the 
measured flux reproduced by electrical heating. The nonequivalence of the action of the flux 
and the electrical power is the basic error source in such radiometers. An attempt to elimi- 
nate this error source was undertaken in [3] by integrating the thermal effect over the radiom- 
eter surface, independent of the source of that effect. The radiometer is a cone wound of 
wire, the resistance of which varies upon heating. The form of that radiometer is obviously 
not optimal, since absorption and radiation conditions are different along the directrix. 

In the radiometer produced by the author, with the form of a Wood horn, the difference 
in indications upon irradiation by a heliunr-neon laser at the peak and base of the cavity 
reached 5%. 

Another possible approach is integration of the flux density radiated into space over 
the radiometer surface: 

P = S qds. (1) 
$ 

We replace the integral by a summation and express the flux by Newton's formula 

N 

P = X=~ (Ti -- r0)~s. (2) 
t = 1  

T h e  c o e f f i c i e n t  o f  h e a t  l i b e r a t i o n  i n  a v a c u u m  d e p e n d s  on  t h e  t e m p e r a t u r e s  T i  and  To a n d  
t h e  p r o p e r t i e s  o f  t h e  s u r f a c e .  " H o w e v e r ,  i f  t h e  s u r f a c e  i s  h o m o g e n e o u s  and  t h e  r e l a t i v e  c h a n g e  
i n  t e m p e r a t u r e s  T i i s  s m a l l  ( F i g .  1 ) ,  we may t h e n  a s s u m e  t h a t  a i  = a = c o n s t  a n d  d e f i n e  t h e  
mean temperature value from the system of equations 

= = e ~ ( T  2 + T ~ T  + To), T = T O + P/4aR2=. 

We divide the entire surface into N equal size areas s i = 4~R2N -~, then sum T i -- To, 
which can be done by a thermopile, the hot junctions of which are located in the i areas, 
with cold junctions at temperature To. The thermopile emf will then be 

U = kN/4~R~a.  

A similar expression relates the emf to the electric heater power: the measured flux can 
be determined from the expression P = UME -I. To eliminate the effects of the rmopile nonlin- 
earity, E must be close to M. This last relationship is all the more accurate, the closer 
the sum of Eq. (2) is to the integral of Eq. (I), i.e., the greater the number N. However, 
technological difficulties limit the possible number of thermocouples. The situation may be 
improved by making use of the symmetry of the radiometer temperature field. The thermo- 
couples may be located in the plane of symmetry with a variable spacing such that each thermo- 
pair belongs to a toroidal zone lying in a plane perpendicular to the axis of symmetry with 
area [4] s i = 2~R2(I + cos~)/N. The outer boundary of the i-th zone (inner boundary of the 
first zone B) is given by the expression 
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Fig. i. Surface temperature of spheri- 
cal radiometer vs latitude at P = 1 W, 

= 350 W/m'deg K. Zero value of the 
ordinate is average temperature shift 

= P/4~R2~. Curves i, 2, 3 correspond 
to wall thicknesses ~ = 0.5 �9 10 -4 m; 

4, 5, 6, ~ = 1 �9 i0 ~4 m; 1 and 4, O = 
15~ 2 and 5, O = 30~ 3 and 6, @ = 60~ 
a) R = 2 �9 10 -2 m; a = 3.08 W/m2.deg K; 
b) R = 4 �9 10 -2 m; ~ = 3.08 W/m2-deg K; 
c) R = 2 �9 10 -2 m; ~ = 1.48 W/m2.deg K; 
d) R = 4 �9 10 -2 m; ~ = 1.48 W/m2-deg K. 

~, ~ 

i ) i (3) cosei--cos~ 1 - -  y N 

The lower limit of the number N must be established from the admissable nonequivalence 
of measured flux and electrical power. For its definition we must consider the temperature 
field developed within the radiometer. 

According to [5], at the moment of measurement the stationary temperature field on the 
outer surface of the radiometer has the form 

p Pa ~ '~ (2m § 1) 2 W,~(xo)Lm(x) 
T = To + 4~R2------- ~ + 4~r2(1--Xo) ,,,~l Rm+l r~-l (4) 

= rm~_ o.~+2(rn§ R m m[(m§ 

Integration of Eq. (4) over the radiometer surface (ds = 2~R2sinedO; sited0 =--dx), in 
view of the orthogonality of the Legendre polynomials, produces a family 

~ (T --  To) = (5) ds- -  P O. 
s 

The third term of Eq, (4), which may be termed T(0), must pass through a null at some @ ~ 
otherwise the law of conservation of energy, of which Eq. (5) is an expression, will be vio- 

lated. 

On curves of T(@) constructed by calculation with Eq. (4) on a Minsk-32 computer, it 
is evident that O ~ varies little with change in parameters of either radiometer or flux 
(change in P produces no effect, while variation in xo shifts O ~ insignificantly), and is 
located in the range between O = 75 and 80 ~ . It is also evident that, because aRX -~ = 10 -4 , 
change in ~ has practically no effect on the curve. The tangential temperature gradient is 
approximately three orders of magnitude greater than the radial. It is somewhat unexpected 
that upon increase in sphere radius the curves show practically no decrease while the tangen- 
tial temperature gradient gradsT decreases in inverse proportion to the change in radius: 
gradoT = AT/RA8 = const/R, so that the thermal flux passing through the section with coordi- 
nate O is independent of radius: 

Qe ---- 2~Rsin @6 (--~, OT)=-- -2~t~ , s ineOT 
Roo ae 

To obtain the relationship between the number N and the error produced by replacement 
of integral (i) by sum (2), we find the absolute error proportional to the double sum: 
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N 

i=1  m.=l 

where cose i should be taken from Eq. (3). 

The relative error, as follows from Eqs. (2), (4), is 

(6) 

~ =  I - - ~  N 

Computer calculations with Eqs. (6), (7) permit the following conclusions. 

The relative error decreases approximately proportionally to wall thickness and the 
square root of the number of thermocouples, and inversely proportionally ito the heat libera- 

-5 
tion coefficient and the square of the sphere radius, i.e., ~=C=R26-1N S is of the order 
of magnitude of 10-3m'deg K/W at % = 350W/m'deg K, and is independent of 8o. 

Values of ~ for ~ = 1.48 W/m2.deg K,~ = 0.5 �9 10 -4 m, N = 90 are as follows: for 0o 
equal to 15, 30, 60 ~ , ~ is 0.82, 0.58, 0.32%. 

This last expression reveals methods for reducing the replacement error. First of all, 
the angle of divergence of the radiation beam entering the radiometer must be increased. As 
is evident, increase in the beam half-angle from 15 to 60 ~ reduces the error by a factor of 
2.6. However, there are technical difficulties in beam modification, connected with absorp- 
tion and aberration of wide angle beams, which lead to an increase in flux measurement error. 

The heat liberation coefficient should be reduced. This can be done, first, by cooling 
the radiometer, e.g., by placing it in a cooling screen (as described in [4]), so that ther- 
mal noise also decreases; second, the emissivity of the radiometer surface should be decreased 
by constructing it of low emissivity material (nickel, for example) and polishing. 

Increase in radiometer wall thickness also reduces the error. 

The latter two approaches lead to an increase in radiometer thermal inertia, and aside 
from increasing the time needed to perform measurements, this can introduce errors connected 
with the limited stability of the radiator over time. 

Most effective is reduction in the sphere radius, since error is proportional to the 
square of the radius; the mechanical strength of the radiometer also increases in this case. 
But decrease in radius reduces the upper limit of measurable flux. Moreover, difficulties in 
radiometer construction and application due to corresponding reduction in input orifice size 

will increase. 

Least effective is increase in the number of thermocouples, but this approach at least 
has no negative consequences like the precedlng ones. 

We will now consider factors not appearing explicitly in the expression for relative sub- 
stitution error. These are the effects of the thermal conductivity coefficient and the coef- 
ficient of reflection of the inner surface (cavity) of the radiometer. 

The reflection coefficient of the internal surface determines equalization of the radia- 
tion field inside the cavity by multiple rereflection. It appears in Eq. (4), where on the 
basis of Kirchhoff's law it is replaced by the emissivity of the cavity material. Upon reduc- 
tion in the reflection coefficient (a silver coating has e = 0.01-0.02) the dependence of sur- 
face temperture on angle 0 decreases together with the substitution error; however, the ab- 
sorbing capability of the cavity then falls,which leads to an increase in measurement error 
(for a nonradiating heater) in accordance with the expression 

= ( I  - -  c o s  ~ X  I - -  ~ 2 ~ .  

Thus, with the exception of the thermal conductivity coefficient, the value of which is 
in essence limiting, and the number of thermocouples, change in all other radiometer param- 
eters directed toward reducing the substitution error will degrade other performance char- 
acteristics, and these various parameters must be chosen in accordance with the radiometer's 

intended use. 
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NO TAT I ON 

P, radiant flux; q, thermal flux; s, surface area; a, heat liberation coefficient; i, 
number of radiometer zone; Ti, temperature of i-th zone; To, temperature of surrounding 
medium; r and R, radii of inner and outer surfaces of radiometer; N, number of zones; U and 
E, thenno-emf of thermocouple during flux measurement and flux substitution; k, thermoelectric 
coefficient of thermocouple ; M, electrical power of substitute heater; B, entrance orifice 
half-angle; g, emissivity of cavity material; O, angular coordinate in spherical coordinate 
system; x = cos6, 8o, and Xo correspond to boundary of area irradiated by flux; Lm(x), 
Legendre polynomial of first sort and m-th order; Wm(xo) = fjiLm(x)dx; ~, thermal conductiv- 
ity coefficient of radiometer material; O ~ latitude at which curve T(8) passes through zero; 
6, cavity wall thickness; Q, thermal flux; ~ and n, relative and absolute error in flux mea- 
surement; C, proportionality coefficient; o, Stefan--Boltzmann constant. 
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CONDUCTIVITY OF NONUNIFORbl SYSTEMS 

G. N. Dul'nev and V. V. Novikov UDC 536.24 

Percolation theory and methods of generalized conduction theory are used to con- 
struct a model of a heterogeneous system and to determine the effective conduc- 
tivity. 

Statement of the Problem. We consider a very simple two-component heterogeneous system 
with random distribution of components, consisting of two kinds of identical isomeric parti- 
cles, occupying the entire system volume without voids (Fig. la). 

We need to find the effective conductivity A of the system (the thermal and electrical 
conductivity, the dielectric constant, the magnetic permeability, the diffusion, etc.) as a 
function of the conductivities A i and the volume concentrations m i of the i-th component 
when the latter do not interact, i.e., the quantity hi does not depend on the concentration 

m i �9 

The effective conductivity h of this system is determined from the equation 

<j> =--A<w>, (1) 

where (J > is the average flux over the volume V (heat, electricity, material, etc.) and 
(V~) is the average volume gradient of the potential due to the flux <j): 

'f <j> =--~- .  j(r)dV, <Vq~>= . v~(r)dV. .(2) 
v v 

Here for the local fluxes j(r) and the potential gradients v~(r) we have the equations 

i ( 0  = - -  A ( 0  V +  (r), 

d iv  j (r) ---- O, ( 3 )  

c u r l  V~ ~ (r)  = O. 
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